Electropolishing of Additively Manufactured Ti-6Al-4V Surfaces in Nontoxic Electrolyte Solution

نویسندگان

چکیده

The reduction of surface roughness on additively manufactured components has become a critical factor in engineering applications. This paper reports the electropolishing Ti-6Al-4V by powder bed selective laser melting (SLM) using nontoxic electrolyte solution. results have shown that salt-based can be used to electropolish titanium alloys. waviness as-built alloy was reduced five times average specimen. minimum obtained 9.52 μm. specimens were characterized scanning electron microscope, Gwyddion software, and electrochemical impedance spectroscopy (EIS) evaluate morphology, profile, charge transfer resistance. X-ray photon (XPS) diffraction (XRD) characterize chemistry XPS XRD showed TiO2 as significant component Ti-6Al-4V, atomic percentage increased after electropolishing. In addition, EIS data indicated high resistance electropolished specimen, which shows growth formation oxide layer.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur...

متن کامل

Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System

Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specim...

متن کامل

Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation

Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in surface morphology during plasma electrolytic oxidation. Data presented in this article are related to t...

متن کامل

Fatigue of Ti-6Al-4V

Metallic biomaterials have essentially three fields of use; these are the artificial hip joints, screw, plates and nails for internal fixation of fractures, and dental implants. Any of these devices must support high mechanical load and resistance of material against breakage is essential. High mechanical properties are needed for structural efficiency of surgical and dental implants. But their...

متن کامل

Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys

A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa inste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Materials Science and Engineering

سال: 2022

ISSN: ['1687-8434', '1687-8442']

DOI: https://doi.org/10.1155/2022/6987353